Chuyên đề đường tròn- Hình học 9-chương 2- Đầy đủ- Cực hay

I/ Những kiến thức cơ bản :

  1. Sự xác định và các tính chất cơ bản của đường tròn :
  2. Tập hợp các điểm cách đều điểm O cho trước một khoảng không đổi R gọi là đường tròn tâm O bán kính R , kí hiệu là (O,R) .
  3. Một đường tròn hoàn toàn xác định bởi một bởi một điều kiện của nó . Nếu AB là đoạn cho trước thì đường tròn đường kính AB là tập hợp những điểm M sao cho góc AMB = 900 . Khi đó tâm O sẽ là trung điểm của AB còn bán kính thì bằng R=AB/2.
  4. Qua 3 điểm A,B ,C không thẳng hàng luôn vẽ được 1 đường tròn và chỉ một mà thôi . Đường tròn đó được gọi là đường tròn ngoại tiếp tam giác ABC .
  5. Trong một đường tròn , đường kính vuông góc với một dây thì đi qua trung điểm dây đó . Ngược lại đường kính đi qua trung điểm của một dây không đi qua tâm  thì vuông góc với dây đó .
  6. Trong đường tròn hai dây cung bằng nhau khi và chỉ khi chúng cách đều tâm .
  7. Trong một đường tròn , hai dây cung không bằng nhau , dây lớn hơn khi và chỉ khi dây  đó gần tâm hơn .
  8. Tiếp tuyến của đường tròn :
  9. Định nghĩa : Đường thẳng được gọi là tiếp tuyến của đường tròn nếu nó có một điểm chung với đường tròn . Điểm đó được gọi là tiếp điểm .
  10. Tính chất : Tiếp tuyến của đường tròn vuông góc với bán kính tại tiếp điểm . Ngược lại , đường thẳng vuông góc với bán kính tại giao điểm của bán kính với đường tròn được gọi là tiếp tuyến .
  11. Hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó cách đến hai tiếp điểm ; tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến ; tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm .
  12. Đường tròn tiếp xúc với 3 cạnh của một tam giác gọi là đường tròn nội tiếp của tam giác đó . Tâm của đường tròn nội tiếp tam giác là giao của 3 đường phân giác của tam giác .
  13. Đường tròn bàng tiếp của tam giác là đường tròn tiếp xúc với một cạnh và phần kéo dài của hai cạnh kia .

Tải tài liệu này tại đây. Đặt mua Sách tham khảo toán 9 tại đây! Tải bản WORD tại đây.