guyglodis learningwarereviews humanscaleseating Cheap NFL Jerseys Cheap Jerseys Wholesale NFL Jerseys arizonacardinalsjerseyspop cheapjerseysbands.com cheapjerseyslan.com cheapjerseysband.com cheapjerseysgest.com cheapjerseysgests.com cheapnfljerseysbands.com cheapnfljerseyslan.com cheapnfljerseysband.com cheapnfljerseysgest.com cheapnfljerseysgests.com wholesalenfljerseysbands.com wholesalenfljerseyslan.com wholesalenfljerseysband.com wholesalenfljerseysgest.com wholesalenfljerseysgests.com wholesalejerseysbands.com wholesalejerseyslan.com wholesalejerseysband.com wholesalejerseysgest.com wholesalejerseysgests.com atlantafalconsjerseyspop baltimoreravensjerseyspop buffalobillsjerseyspop carolinapanthersjerseyspop chicagobearsjerseyspop cincinnatibengalsjerseyspop clevelandbrownsjerseyspop dallascowboysjerseyspop denverbroncosjerseyspop detroitlionsjerseyspop greenbaypackersjerseyspop houstontexansjerseyspop indianapoliscoltsjerseyspop jacksonvillejaguarsjerseyspop kansascitychiefsjerseyspop miamidolphinsjerseyspop minnesotavikingsjerseyspop newenglandpatriotsjerseyspop neworleanssaintsjerseyspop newyorkgiantsjerseyspop newyorkjetsjerseyspop oaklandraidersjerseyspop philadelphiaeaglesjerseyspop pittsburghsteelersjerseyspop sandiegochargersjerseyspop sanfrancisco49ersjerseyspop seattleseahawksjerseyspop losangelesramsjerseyspop tampabaybuccaneersjerseyspop tennesseetitansjerseyspop washingtonredskinsjerseyspop

Lobachevsky-Người tiên phong khảo sát về hình học phi Euclicd


Nikolai Ivanoich Lobachevsky ( Никола́й Ива́нович Лобаче́вски) sinh tại Nizhny Novgorod, Nga vào ngày 1 tháng 12 năm 1972; mất ngày 12 tháng 2 năm 1856 thọ 63 tuổi. Ông – một nhà hình học Nga- nổi tiếng trong công cuộc xây dựng hình học phi Euclide, tìm lối thoát ra khỏi hình học cổ điển để đi đến với không gian bao la của các chiều cong. Hình học Lobachevsky – Bolyai đóng góp vào cơ sở để Albert Einstein xây dựng lí thuyết tương đối nổi tiếng sau này.

Nikolai Ivanoich Lobachevsky ( Никола́й Ива́нович Лобаче́вски) sinh tại Nizhny Novgorod, Nga vào ngày 1 tháng 12 năm 1972; mất ngày 12 tháng 2 năm 1856 thọ 63 tuổi. Ông – một nhà hình học Nga- nổi tiếng trong công cuộc xây dựng hình học phi Euclide, tìm lối thoát ra khỏi hình học cổ điển để đi đến với không gian bao la của các chiều cong. Hình học Lobachevsky – Bolyai đóng góp vào cơ sở để Albert Einstein xây dựng lí thuyết tương đối nổi tiếng sau này.

Bố là Ivan Maksimovich Lobachevsky, thư ký của một văn phòng luật, mẹ là Praskovia Alexandrovna Lobachevskaya.Cha ông mất năm 1800, sau đó, mẹ và ông rời đến Kazan. Tại đó, ông theo học trường Kazan Gymnasium, tốt nghiệp năm 1807 và sau đó là trường Đại học Kazan.Tại đây, ông được tiếp xúc với Martin Bartels (1769–1833), bạn của Carl Friedrich Gauss. Năm 1811, ông được chứng chỉ vật lý và toán học của trường ĐHTH Kazan.Năm 1814, ông bắt đầu công tác giảng dạy và năm 1822, chính thức trở thành giảng viên trường ĐHTH Kazan. Năm 1818, ông được mời làm viện sĩ Viện Hàn lâm Khoa học Kazan. Ông đã từng giữ nhiều chức trách khác nhau của trường cho đến năm 1846.

Nhà toán học Gauss đã mời ông làm viện sĩ nước ngoài Viện Hàn lâm Khoa học Gottingen. Về đời riêng, ông lấy Varvara Alexivna Moisieva năm 1832 và có với bà bảy người con. Ông về hưu (hay có thể bị bãi nhiệm) năm 1846, và từ đó sức khỏe của ông giảm một cách nhanh chóng. Cuối cùng, ông bị mù vĩnh viễn, phải đọc cho người khác chép quyển PANGE “OMETRRIE” nổi tiếng trong lịch sử hình học thế giới.

Tượng tưởng niệm Lobachevsky

Hình học Lobachevsky là hình học do ông xây dựng lên, từ ý tưởng không công nhận tính thống nhất hệ thống các tiên đề do Euclide xây dựng. Khởi đầu, các nhà toán học đương thời gọi hình học do ông xây dựng lên là hình học ảo, nhưng ngày nay hình học Lobachevsky đã trở nên rất thực được kiểm chứng qua các kết quả nghiên cứu thiên văn vũ trụ, và không gian Lobachevsky đã trở thành không gian thực.

Trong quá trình xây dựng các lí thuyết hình học, Euclid thấy có những điều không thể chứng minh mà chỉ có thể thừa nhận, nhằm thống nhât các cơ sở toán học. Euclide đã đưa ra các tiên đề, định đề và trong đó một tiên đề ta quen gặp : “Qua một điểm ở ngoài một đường thẳng, có một và chỉ một đường thẳng song song với đường thẳng đã cho”.

Nhưng dường như đây không phải là tiên đề vì có vẻ mệnh đề này có thể chứng minh từ những tiên đề khác. Điều đó làm hấp dẫn các nhà hình học; họ đã cố gắng chứng minh mệnh đề trên nhưng trong suốt hàng ngàn năm, khi muốn chứng minh điều trên các nhà hình học lại phải thừa nhận một mệnh đề khác. Cũng như muốn định nghĩa tia, ta nói đến nửa đường thẳng; định nghĩa đường thẳng, ta nói đến điểm; và cuối cùng thì phải lại công nhận là “điểm là yếu tố cơ bản của hình học không có định nghĩa”…

Nhưng khoan đã, hãy thử trả lời vấn đề này xem. Giả sử ta có 2 kinh tuyến giao nhau và cùng cắt một vĩ tuyến. Đấy là một chuyện, còn khi ta lấy hai đoạn nhỏ của 2 kinh tuyến trên cùng một vùng vĩ độ ngắn(mặt đất lúc này là mặt phẳng), ta thấy 2 đoạn nhỏ đó song song, nên dẫn đến 2 kinh tuyến tương ứng cũng phải song song. Hay 2 kinh tuyến ấy cùng vuông góc với một vĩ tuyến và giao nhau tại cực (!).

Ngày 11-2-1826, Lobachevski đã công bố kết quả của mình về hình học phi Euclide trên diễn đàn vật lý – số học của trường đại học tổng hợp Kazan. Sau đó, công trình nghiên cức về hình học phi Euclide của Lobachevski với tiêu đề “Về các cơ sở hình học”, đã được đăng ở tờ báo “Thông báo Kazan” xuất bản năm 1829. Ngày nay, chúng ta gọi hình học phi Euclide (do Lobachevski và J.Bolyai đã độc lập với nhau và đồng thời tìm ra ) là hình học Lobachevski hoặc hình học Lobachevski-Bolyai. Ngày 11 tháng 2 năm 1826 được thế giới gọi là ngày ra đời của hình học này.

Trong thời đại của Lobachevski, hầu như không ai hiểu được tư tưởng của ông, nhiều người đã chế nhạo ông. Nhưng Lobachevski đã dũng cảm và tin tưởng phát triển hình học mới của mình. Ông đã kiên trì nghiên cứu và công bố công trình nghiên cứu của mình ngày càng chi tiét hơn, đầy đủ hơn. Một năm trước khi qua đời, Lobachevski đã bị mù. Khi đó ông còn đọc cho học trò của mình chép một công trình sáng tạo mới mang tên “Hình học phẳng”, trong đó ông đã chỉ rõ hình học Euclide chỉ là trường hợp giới hạn của hình học phi Euclide của ông. Lobachevski đã gửi công trình cuôí cùng này cho trường đại học tổng hợp Kazan – nơi cả cuộc đời sáng tạo của ông đã trôi qua ở đó. Vài chục năm sau khi ông mất người ta mới công nhận toàn bộ những tư tưởng của ông.

Công trình nghiên cứu của Lobachevski và J.Bolyai về hình học phi Euclide là một thành tựu vĩ đại của khoa học, đã mở ra một kỷ nghiên mới của toán học, của vật lý và của nhiều ngành khoa học khác có liên quan.

Nikolai Ivanoich Lobachevsky qua đời để lại cho nhân loại những tác phẩm:

Cơ sở hình học (1930)
Hình học ảo (1837)
Cơ sở mới của hình học(1838)
Khảo cứu mới về lí thuyết đường song song (1840)
Panego’me’trie (cuối đời)

NIKOLAI IVANOICH LOBACHEVSKY, NHÀ TOÁN HỌC THIÊN TÀI ĐÃ TÌM RA THẾ GIỚI HÌNH HỌC MỚI. TUY CÙNG LÚC VỚI ÔNG CÒN CÓ NHIỀU NHÀ KHOA HỌC KHÁC CŨNG TÌM RA ĐIỀU NÀY, NHƯNG CÔNG TRÌNH CỦA LOBACHEVSKY LÀ KHÔNG THỂ CHỐI BỎ ĐƯỢC. VỚI HÌNH HỌC PHI EUCLIDE, NHÂN LOẠI CÓ THỂ TÌM RA NHỮNG ĐIỀU MỚI MẺ NỮA VỀ VŨ TRỤ BAO LA HUYỀN BÍ, CÒN NHIỀU ĐIỀU BÍ ẨN NỮA CHƯA ĐƯỢC TÌM RA. CHÚNG TA HÃY BIẾT ƠN ÔNG, MỘT TRONG NHỮNG NGƯỜI ĐÃ GÓP SỨC VIẾT THÊM VÀO TRI THỨC TOÁN HỌC NÓI RIÊNG VÀ KHOA HỌC NÓI CHUNG CỦA NHÂN LOẠI.

Leave a Reply

Your email address will not be published. Required fields are marked *